Multi-view Discriminative Sequential Learning

نویسندگان

  • Ulf Brefeld
  • Christoph Büscher
  • Tobias Scheffer
چکیده

Discriminative learning techniques for sequential data have proven to be more effective than generative models for named entity recognition, information extraction, and other tasks of discrimination. However, semi-supervised learning mechanisms that utilize inexpensive unlabeled sequences in addition to few labeled sequences – such as the Baum-Welch algorithm – are available only for generative models. The multi-view approach is based on the principle of maximizing the consensus among multiple independent hypotheses; we develop this principle into a semi-supervised hidden Markov perceptron, and a semi-supervised hidden Markov support vector learning algorithm. Experiments reveal that the resulting procedures utilize unlabeled data effectively and discriminate more accurately than their purely supervised counterparts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-View Hidden Markov Perceptrons

Discriminative learning techniques for sequential data have proven to be more effective than generative models for named entity recognition, information extraction, and other tasks of discrimination. However, semi-supervised learning mechanisms that utilize inexpensive unlabeled sequences in addition to few labeled sequences – such as the Baum-Welch algorithm – are available only for generative...

متن کامل

Multi-view Feature Learning with Discriminative Regularization

More and more multi-view data which can capture rich information from heterogeneous features are widely used in real world applications. How to integrate different types of features, and how to learn low dimensional and discriminative information from high dimensional data are two main challenges. To address these challenges, this paper proposes a novel multi-view feature learning framework, wh...

متن کامل

Discovery of Shifting Patterns in Sequence Classification

In this paper, we investigate the multi-variate sequence classification problem from a multi-instance learning perspective. Real-world sequential data commonly show discriminative patterns only at specific time periods. For instance, we can identify a cropland during its growing season, but it looks similar to a barren land after harvest or before planting. Besides, even within the same class, ...

متن کامل

Memory Fusion Network for Multi-view Sequential Learning

Multi-view sequential learning is a fundamental problem in machine learning dealing with multi-view sequences. In a multi-view sequence, there exists two forms of interactions between different views: view-specific interactions and crossview interactions. In this paper, we present a new neural architecture for multi-view sequential learning called the Memory Fusion Network (MFN) that explicitly...

متن کامل

Uncorrelated Multi-View Discrimination Dictionary Learning for Recognition

Dictionary learning (DL) has now become an important feature learning technique that owns state-of-the-art recognition performance. Due to sparse characteristic of data in real-world applications, DL uses a set of learned dictionary bases to represent the linear decomposition of a data point. Fisher discrimination DL (FDDL) is a representative supervised DL method, which constructs a structured...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005